Nanomaterials (Aug 2023)

Thermally Stable Ceramic-Salt Electrolytes for Li Metal Batteries Produced from Cold Sintering Using DMF/Water Mixture Solvents

  • Sunwoo Kim,
  • Yejin Gim,
  • Wonho Lee

DOI
https://doi.org/10.3390/nano13172436
Journal volume & issue
Vol. 13, no. 17
p. 2436

Abstract

Read online

The cold sintering process (CSP) for synthesizing oxide-based electrolytes, which uses water transient solvents and uniaxial pressure, is a promising alternative to the conventional high temperature sintering process due to its low temperature (1.5Al0.5Ge1.5(PO4)3 (LAGP) with bis(trifluoromethane)sulfonimide lithium salt (LiTFSI). Our results show that composite electrolytes processed with the DMF/water mixture (CSP LAGP-LiTFSI DMF/H2O) yield a high σ of 10−4 S cm−1 at room temperature and high relative densities of >87%. Furthermore, the composite electrolytes exhibit good thermal stability; the σ maintains its initial value after heat treatment. In contrast, the composite electrolytes processed with the DMSO/water mixture and water alone show thermal degradation. The CSP LAGP-LiTFSI DMF/H2O composite electrolytes exhibit long-term stability, showing no signs of short circuiting after 350 h at 0.1 mAh cm−2 in Li symmetric cells. Our work highlights the importance of selecting appropriate transient solvents for producing efficient and stable composite electrolytes using CSP.

Keywords