Cell Reports (May 2024)
Genetic compensation between ribosomal protein paralogs mediated by a cognate circular RNA
Abstract
Summary: Inter-regulation between related genes, such as ribosomal protein (RP) paralogs, has been observed to be important for genetic compensation and paralog-specific functions. However, how paralogs communicate to modulate their expression levels is unknown. Here, we report a circular RNA involved in the inter-regulation between RP paralogs RpL22 and RpL22-like during Drosophila spermatogenesis. Both paralogs are mutually regulated by the circular stable intronic sequence RNA (sisRNA) circRpL22(NE,3S) produced from the RpL22 locus. RpL22 represses itself and RpL22-like. Interestingly, circRpL22 binds to RpL22 to repress RpL22-like, but not RpL22, suggesting that circRpL22 modulates RpL22’s function. circRpL22 is in turn controlled by RpL22-like, which regulates RpL22 binding to circRpL22 to indirectly modulate RpL22. This circRpL22-centric inter-regulatory circuit enables the loss of RpL22-like to be genetically compensated by RpL22 upregulation to ensure robust male germline development. Thus, our study identifies sisRNA as a possible mechanism of genetic crosstalk between paralogous genes.