European Physical Journal C: Particles and Fields (Sep 2020)

Suppression of Penning discharges between the KATRIN spectrometers

  • M. Aker,
  • K. Altenmüller,
  • A. Beglarian,
  • J. Behrens,
  • A. Berlev,
  • U. Besserer,
  • K. Blaum,
  • F. Block,
  • S. Bobien,
  • B. Bornschein,
  • L. Bornschein,
  • H. Bouquet,
  • T. Brunst,
  • T. S. Caldwell,
  • S. Chilingaryan,
  • W. Choi,
  • K. Debowski,
  • M. Deffert,
  • M. Descher,
  • D. Díaz Barrero,
  • P. J. Doe,
  • O. Dragoun,
  • G. Drexlin,
  • S. Dyba,
  • K. Eitel,
  • E. Ellinger,
  • R. Engel,
  • S. Enomoto,
  • D. Eversheim,
  • M. Fedkevych,
  • A. Felden,
  • J. A. Formaggio,
  • F. Fränkle,
  • G. B. Franklin,
  • H. Frankrone,
  • F. Friedel,
  • A. Fulst,
  • K. Gauda,
  • W. Gil,
  • F. Glück,
  • S. Grohmann,
  • R. Grössle,
  • R. Gumbsheimer,
  • M. Hackenjos,
  • V. Hannen,
  • J. Hartmann,
  • N. Haußmann,
  • F. Heizmann,
  • J. Heizmann,
  • K. Helbing,
  • S. Hickford,
  • D. Hillesheimer,
  • D. Hinz,
  • T. Höhn,
  • B. Holzapfel,
  • S. Holzmann,
  • T. Houdy,
  • A. Jansen,
  • C. Karl,
  • J. Kellerer,
  • N. Kernert,
  • L. Kippenbrock,
  • M. Klein,
  • C. Köhler,
  • L. Köllenberger,
  • A. Kopmann,
  • M. Korzeczek,
  • A. Kovalík,
  • B. Krasch,
  • H. Krause,
  • B. Kuffner,
  • N. Kunka,
  • T. Lasserre,
  • L. La Cascio,
  • O. Lebeda,
  • B. Lehnert,
  • J. Letnev,
  • F. Leven,
  • T. L. Le,
  • S. Lichter,
  • A. Lokhov,
  • M. Machatschek,
  • E. Malcherek,
  • A. Marsteller,
  • E. L. Martin,
  • C. Melzer,
  • A. Menshikov,
  • S. Mertens,
  • S. Mirz,
  • B. Monreal,
  • K. Müller,
  • U. Naumann,
  • H. Neumann,
  • S. Niemes,
  • M. Noe,
  • H.-W. Ortjohann,
  • A. Osipowicz,
  • E. Otten,
  • D. S. Parno,
  • A. Pollithy,
  • A. W. P. Poon,
  • J. M. L. Poyato,
  • F. Priester,
  • P. C.-O. Ranitzsch,
  • O. Rest,
  • R. Rinderspacher,
  • R. G. H. Robertson,
  • C. Rodenbeck,
  • P. Rohr,
  • M. Röllig,
  • C. Röttele,
  • M. Ryšavý,
  • R. Sack,
  • A. Saenz,
  • P. Schäfer,
  • L. Schimpf,
  • K. Schlösser,
  • M. Schlösser,
  • L. Schlüter,
  • M. Schrank,
  • B. Schulz,
  • H. Seitz-Moskaliuk,
  • W. Seller,
  • V. Sibille,
  • D. Siegmann,
  • M. Slezák,
  • F. Spanier,
  • M. Steidl,
  • M. Steven,
  • M. Sturm,
  • M. Suesser,
  • M. Sun,
  • D. Tcherniakhovski,
  • H. H. Telle,
  • L. A. Thorne,
  • T. Thümmler,
  • N. Titov,
  • I. Tkachev,
  • N. Trost,
  • K. Valerius,
  • D. Vénos,
  • R. Vianden,
  • A. P. Vizcaya Hernández,
  • M. Weber,
  • C. Weinheimer,
  • C. Weiss,
  • S. Welte,
  • J. Wendel,
  • J. F. Wilkerson,
  • J. Wolf,
  • S. Wüstling,
  • W. Xu,
  • Y.-R. Yen,
  • S. Zadoroghny,
  • G. Zeller

DOI
https://doi.org/10.1140/epjc/s10052-020-8278-y
Journal volume & issue
Vol. 80, no. 9
pp. 1 – 12

Abstract

Read online

Abstract The KArlsruhe TRItium Neutrino experiment (KATRIN) aims to determine the effective electron (anti)-neutrino mass with a sensitivity of 0.2eV/c $$^2$$ 2 by precisely measuring the endpoint region of the tritium $$\beta $$ β -decay spectrum. It uses a tandem of electrostatic spectrometers working as magnetic adiabatic collimation combined with an electrostatic (MAC-E) filters. In the space between the pre-spectrometer and the main spectrometer, creating a Penning trap is unavoidable when the superconducting magnet between the two spectrometers, biased at their respective nominal potentials, is energized. The electrons accumulated in this trap can lead to discharges, which create additional background electrons and endanger the spectrometer and detector section downstream. To counteract this problem, “electron catchers” were installed in the beamline inside the magnet bore between the two spectrometers. These catchers can be moved across the magnetic-flux tube and intercept on a sub-ms time scale the stored electrons along their magnetron motion paths. In this paper, we report on the design and the successful commissioning of the electron catchers and present results on their efficiency in reducing the experimental background.