Materials (Jun 2024)
On the Use of Nanoparticles in Dental Implants
Abstract
Results obtained in physics, chemistry and materials science on nanoparticles have drawn significant interest in the use of nanostructures on dental implants. The main focus concerns nanoscale surface modifications of titanium-based dental implants in order to increase the surface roughness and provide a better bone–implant interfacial area. Surface coatings via the sol–gel process ensure the deposition of a homogeneous layer of nanoparticles or mixtures of nanoparticles on the titanium substrate. Nanotubular structures created on the titanium surface by anodic oxidation yield an interesting nanotopography for drug release. Carbon-based nanomaterials hold great promise in the field of dentistry on account of their outstanding mechanical properties and their structural characteristics. Carbon nanomaterials that include carbon nanotubes, graphene and its derivatives (graphene oxide and graphene quantum dots) can be used as coatings of the implant surface. Their antibacterial properties as well as their ability to be functionalized with adequate chemical groups make them particularly useful for improving biocompatibility and promoting osseointegration. Nevertheless, an evaluation of their possible toxicity is required before being exploited in clinical trials.
Keywords