Toxics (Nov 2022)

Association of Short-Term Exposure to PM<sub>2.5</sub> with Blood Lipids and the Modification Effects of Insulin Resistance: A Panel Study in Wuhan

  • Jinhui Sun,
  • Shouxin Peng,
  • Zhaoyuan Li,
  • Feifei Liu,
  • Chuangxin Wu,
  • Yuanan Lu,
  • Hao Xiang

DOI
https://doi.org/10.3390/toxics10110663
Journal volume & issue
Vol. 10, no. 11
p. 663

Abstract

Read online

Results of previous studies about the acute effects of fine particulate matter (PM2.5) on blood lipids were inconsistent. This study aimed to quantify the short-term effects of PM2.5 on blood lipids and estimate the modifying role of insulin resistance, reflected by the homeostasis model assessment of insulin resistance (HOMA-IR). From September 2019 to January 2020, the study recruited 70 healthy adults from Wuhan University for a total of eight repeated data collections. At each visit, three consecutive days were monitored for personal exposure to PM2.5, and then a physical examination was carried out on the fourth day. The linear mixed-effect models were operated to investigate the impact of PM2.5 over diverse exposure windows on blood lipids. With the median of the HOMA-IR 1.820 as the cut-off point, participants were assigned to two groups for the interaction analyses. We found the overall mean level (standard deviation, SD) of PM2.5 was 38.34 (18.33) μg/m3. Additionally, with a 10 μg/m3 rise in PM2.5, the corresponding largest responses in triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), as well as high-density lipoprotein cholesterol (HDL-C), were −0.91% (95% confidence interval (CI): −1.63%, −0.18%), −0.33% (95% CI: −0.64%, −0.01%,), −0.94% (95% CI: −1.53%, −0.35%), and 0.67% (95% CI: 0.32%, 1.02%), respectively. The interaction analyses revealed that a significantly greater reduction in the four lipids corresponded to PM2.5 exposure when in the group with the lower HOMA-IR (2.5 exposure over specific time windows among healthy adults was associated with reduced TG, TC, as well as LDL-C levels, and elevated HDL-C. Additionally, the association of PM2.5–lipids may be modulated by insulin resistance.

Keywords