Atmospheric Chemistry and Physics (Jul 2017)

Estimating daily surface NO<sub>2</sub> concentrations from satellite data – a case study over Hong Kong using land use regression models

  • J. S. Anand,
  • P. S. Monks

DOI
https://doi.org/10.5194/acp-17-8211-2017
Journal volume & issue
Vol. 17
pp. 8211 – 8230

Abstract

Read online

Land use regression (LUR) models have been used in epidemiology to determine the fine-scale spatial variation in air pollutants such as nitrogen dioxide (NO2) in cities and larger regions. However, they are often limited in their temporal resolution, which may potentially be rectified by employing the synoptic coverage provided by satellite measurements. In this work a mixed-effects LUR model is developed to model daily surface NO2 concentrations over the Hong Kong SAR during the period 2005–2015. In situ measurements from the Hong Kong Air Quality Monitoring Network, along with tropospheric vertical column density (VCD) data from the OMI, GOME-2A, and SCIAMACHY satellite instruments were combined with fine-scale land use parameters to provide the spatiotemporal information necessary to predict daily surface concentrations. Cross-validation with the in situ data shows that the mixed-effects LUR model using OMI data has a high predictive power (adj. R2 = 0. 84), especially when compared with surface concentrations derived using the MACC-II reanalysis model dataset (adj. R2 = 0. 11). Time series analysis shows no statistically significant trend in NO2 concentrations during 2005–2015, despite a reported decline in NOx emissions. This study demonstrates the utility in combining satellite data with LUR models to derive daily maps of ambient surface NO2 for use in exposure studies.