Croatian Journal of Forest Engineering (Jan 2016)

Evaluation of Chipping Productivity with Five Different Mobile Chippers at Different Forest Sites by a Stochastic Model

  • Simon Berg,
  • Rin Sakurai,
  • Hideo Sakai,
  • Mika Yoshida

Journal volume & issue
Vol. 37, no. 2
pp. 309 – 318

Abstract

Read online

It is important to evaluate chipping productivity that often differed according to the timing of observations and varied unexpectedly. A variation in production was the major concern of stakeholders for sustainable forest operation to establish regularly attainable production schedules on many operational levels. The aim of this study was to estimate the variance of chipping productivity by using a stochastic simulation model to achieve the objective evaluation of chipper performances. Chipping operations of five different kinds of mobile chippers, i.e. three smaller and two middle and larger ones in horse powers, were investigated. Probability distributions of material size and feeding time for chipping in a log-normal distribution were estimated. The estimates were made based on chipping operations performed 2000 or 4000 times by mechanical repetitions. Except for the largest chipper, whose observed productivity was 338 loose m3/hr, all of the observed productivities, varying from 18 to 68 loose m3/hr, were located within a two-sided confidential interval whose difference between both ends was 4 to 10 loose m3/hr. The estimates were, generally, reliable with small variances around the median productivity values in the model. By this stochastic model, chipper productivity could be shown objectively, while the accuracy would be improved more by increasing sample size and accurate material size measurement. It was elucidated that the operations followed by chipping should encompass enough volume capacity to provide stable chipping productivity.