Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
Elisa Manieri
Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
Ivana Nikolic
Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
Ayelén Melina Santamans
Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
Valle Montalvo-Romeral
Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
Francisco Miguel Cruz
Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
Elena Rodríguez
Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
Marta León
Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
Luis Leiva-Vega
Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
Laura Sanz
Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
Víctor Bondía
Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
David Filgueiras-Rama
Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Madrid, Spain; Hospital Clínico Universitario San Carlos, Madrid, Spain
Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Madrid, Spain; Center for Arrhythmia Research, Department of Internal Medicine, University of Michigan, Ann Arbor, Ann Arbor, United States
Stress-activated p38 kinases control a plethora of functions, and their dysregulation has been linked to the development of steatosis, obesity, immune disorders, and cancer. Therefore, they have been identified as potential targets for novel therapeutic strategies. There are four p38 family members (p38α, p38β, p38γ, and p38δ) that are activated by MKK3 and MKK6. Here, we demonstrate that lack of MKK6 reduces the lifespan in mice. Longitudinal study of cardiac function in MKK6 KO mice showed that young mice develop cardiac hypertrophy which progresses to cardiac dilatation and fibrosis with age. Mechanistically, lack of MKK6 blunts p38α activation while causing MKK3-p38γ/δ hyperphosphorylation and increased mammalian target of rapamycin (mTOR) signaling, resulting in cardiac hypertrophy. Cardiac hypertrophy in MKK6 KO mice is reverted by knocking out either p38γ or p38δ or by inhibiting the mTOR pathway with rapamycin. In conclusion, we have identified a key role for the MKK3/6-p38γ/δ pathway in the development of cardiac hypertrophy, which has important implications for the clinical use of p38α inhibitors in the long-term treatment since they might result in cardiotoxicity.