Proceedings (Jul 2019)

Priors for Diversity and Novelty on Neural Recommender Systems

  • Alfonso Landin,
  • Daniel Valcarce,
  • Javier Parapar,
  • Álvaro Barreiro

DOI
https://doi.org/10.3390/proceedings2019021020
Journal volume & issue
Vol. 21, no. 1
p. 20

Abstract

Read online

PRIN is a neural based recommendation method that allows the incorporation of item prior information into the recommendation process. In this work we study how the system behaves in terms of novelty and diversity under different configurations of item prior probability estimations. Our results show the versatility of the framework and how its behavior can be adapted to the desired properties, whether accuracy is preferred or diversity and novelty are the desired properties, or how a balance can be achieved with the proper selection of prior estimations.

Keywords