Sensors (Aug 2018)
Multiscale Rotated Bounding Box-Based Deep Learning Method for Detecting Ship Targets in Remote Sensing Images
Abstract
Since remote sensing images are captured from the top of the target, such as from a satellite or plane platform, ship targets can be presented at any orientation. When detecting ship targets using horizontal bounding boxes, there will be background clutter in the box. This clutter makes it harder to detect the ship and find its precise location, especially when the targets are in close proximity or staying close to the shore. To solve these problems, this paper proposes a deep learning algorithm using a multiscale rotated bounding box to detect the ship target in a complex background and obtain the location and orientation information of the ship. When labeling the oriented targets, we use the five-parameter method to ensure that the box shape is maintained rectangular. The algorithm uses a pretrained deep network to extract features and produces two divided flow paths to output the result. One flow path predicts the target class, while the other predicts the location and angle information. In the training stage, we match the prior multiscale rotated bounding boxes to the ground-truth bounding boxes to obtain the positive sample information and use it to train the deep learning model. When matching the rotated bounding boxes, we narrow down the selection scope to reduce the amount of calculation. In the testing stage, we use the trained model to predict and obtain the final result after comparing with the score threshold and nonmaximum suppression post-processing. Experiments conducted on a remote sensing dataset show that the algorithm is robust in detecting ship targets under complex conditions, such as wave clutter background, target in close proximity, ship close to the shore, and multiscale varieties. Compared to other algorithms, our algorithm not only exhibits better performance in ship detection but also obtains the precise location and orientation information of the ship.
Keywords