Metabolomic Profiling in Lung Cancer: A Systematic Review
Daniela Madama,
Rosana Martins,
Ana S. Pires,
Maria F. Botelho,
Marco G. Alves,
Ana M. Abrantes,
Carlos R. Cordeiro
Affiliations
Daniela Madama
Clinical Academic Center of Coimbra (CACC), Department of Pulmonology, Faculty of Medicine, University Hospitals of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal
Rosana Martins
Coimbra Institute for Clinical and Biomedical Research (iCBR), Biophysics Institute of Faculty of Medicine of University of Coimbra, Area of Environmental Genetics and Oncobiology (CIMAGO), 3000-548 Coimbra, Portugal
Ana S. Pires
Clinical Academic Center of Coimbra (CACC), Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra Institute for Clinical and Biomedical Research (iCBR), Biophysics Institute of Faculty of Medicine of University of Coimbra, Area of Environmental Genetics and Oncobiology (CIMAGO), 3000-548 Coimbra, Portugal
Maria F. Botelho
Clinical Academic Center of Coimbra (CACC), Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra Institute for Clinical and Biomedical Research (iCBR), Biophysics Institute of Faculty of Medicine of University of Coimbra, Area of Environmental Genetics and Oncobiology (CIMAGO), 3000-548 Coimbra, Portugal
Marco G. Alves
Department of Anatomy, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4099-002 Porto, Portugal
Ana M. Abrantes
Clinical Academic Center of Coimbra (CACC), Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra Institute for Clinical and Biomedical Research (iCBR), Biophysics Institute of Faculty of Medicine of University of Coimbra, Area of Environmental Genetics and Oncobiology (CIMAGO), 3000-548 Coimbra, Portugal
Carlos R. Cordeiro
Clinical Academic Center of Coimbra (CACC), Department of Pulmonology, Faculty of Medicine, University Hospitals of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal
Lung cancer continues to be a significant burden worldwide and remains the leading cause of cancer-associated mortality. Two considerable challenges posed by this disease are the diagnosis of 61% of patients in advanced stages and the reduced five-year survival rate of around 4%. Noninvasively collected samples are gaining significant interest as new areas of knowledge are being sought and opened up. Metabolomics is one of these growing areas. In recent years, the use of metabolomics as a resource for the study of lung cancer has been growing. We conducted a systematic review of the literature from the past 10 years in order to identify some metabolites associated with lung cancer. More than 150 metabolites have been associated with lung cancer-altered metabolism. These were detected in different biological samples by different metabolomic analytical platforms. Some of the published results have been consistent, showing the presence/alteration of specific metabolites. However, there is a clear variability due to lack of a full clinical characterization of patients or standardized patients selection. In addition, few published studies have focused on the added value of the metabolomic profile as a means of predicting treatment response for lung cancer. This review reinforces the need for consistent and systematized studies, which will help make it possible to identify metabolic biomarkers and metabolic pathways responsible for the mechanisms that promote tumor progression, relapse and eventually resistance to therapy.