Boundary Value Problems (May 2020)
Existence of positive radial solution for Neumann problem on the Heisenberg group
Abstract
Abstract The existence of at least one positive radial solution of the Neumann problem − Δ H n u + R ( ξ ) u = a ( | ξ | H n ) | u | p − 2 u − b ( | ξ | H n ) | u | q − 2 u , $$ -\Delta _{\mathbb{H}^{n}} u+R(\xi ) u=a \bigl( \vert \xi \vert _{\mathbb{H}^{n}} \bigr) \vert u \vert ^{p-2} u - b\bigl( \vert \xi \vert _{\mathbb{H}^{n}}\bigr) \vert u \vert ^{q-2}u, $$ is proved on the Heisenberg group H n $\mathbb{H}^{n}$ , via the variational principle, where a ( | ξ | H n ) $a(|\xi |_{\mathbb{H}^{n}})$ , b ( | ξ | H n ) $b(|\xi |_{\mathbb{H}^{n}})$ are nonnegative radial functions and R ( ξ ) $R(\xi )$ satisfies suitable conditions.
Keywords