Nature Communications (Oct 2021)

Objective comparison of methods to decode anomalous diffusion

  • Gorka Muñoz-Gil,
  • Giovanni Volpe,
  • Miguel Angel Garcia-March,
  • Erez Aghion,
  • Aykut Argun,
  • Chang Beom Hong,
  • Tom Bland,
  • Stefano Bo,
  • J. Alberto Conejero,
  • Nicolás Firbas,
  • Òscar Garibo i Orts,
  • Alessia Gentili,
  • Zihan Huang,
  • Jae-Hyung Jeon,
  • Hélène Kabbech,
  • Yeongjin Kim,
  • Patrycja Kowalek,
  • Diego Krapf,
  • Hanna Loch-Olszewska,
  • Michael A. Lomholt,
  • Jean-Baptiste Masson,
  • Philipp G. Meyer,
  • Seongyu Park,
  • Borja Requena,
  • Ihor Smal,
  • Taegeun Song,
  • Janusz Szwabiński,
  • Samudrajit Thapa,
  • Hippolyte Verdier,
  • Giorgio Volpe,
  • Artur Widera,
  • Maciej Lewenstein,
  • Ralf Metzler,
  • Carlo Manzo

DOI
https://doi.org/10.1038/s41467-021-26320-w
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 16

Abstract

Read online

Deviations from Brownian motion leading to anomalous diffusion are ubiquitously found in transport dynamics but often difficult to characterize. Here the authors compare approaches for single trajectory analysis through an open competition, showing that machine learning methods outperform classical approaches.