Molecular Therapy: Nucleic Acids (Jun 2023)
Expanding DdCBE-mediated targeting scope to aC motif preference in rat
- Xiaolong Qi,
- Lei Tan,
- Xu Zhang,
- Jiachuan Jin,
- Weining Kong,
- Wei Chen,
- Jianying Wang,
- Wei Dong,
- Lijuan Gao,
- Lijun Luo,
- Dan Lu,
- Jianan Gong,
- Feifei Guan,
- Wenjie Shu,
- Xingxu Huang,
- Lianfeng Zhang,
- Shengqi Wang,
- Bin Shen,
- Yuanwu Ma
Affiliations
- Xiaolong Qi
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
- Lei Tan
- State Key Laboratory of Reproductive Medicine, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, Jiangsu 211100, China
- Xu Zhang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
- Jiachuan Jin
- Center for Reproductive Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Weining Kong
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
- Wei Chen
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
- Jianying Wang
- State Key Laboratory of Reproductive Medicine, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, Jiangsu 211100, China
- Wei Dong
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
- Lijuan Gao
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
- Lijun Luo
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
- Dan Lu
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
- Jianan Gong
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
- Feifei Guan
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
- Wenjie Shu
- Bioinformatics Center of AMMS, Beijing 100850, China
- Xingxu Huang
- Zhejiang Laboratory, Hangzhou, Zhejiang 311121, China
- Lianfeng Zhang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing 100730, China
- Shengqi Wang
- Bioinformatics Center of AMMS, Beijing 100850, China; Corresponding author: Shengqi Wang, Bioinformatics Center of AMMS, Beijing 100850, China.
- Bin Shen
- State Key Laboratory of Reproductive Medicine, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, Jiangsu 211100, China; Zhejiang Laboratory, Hangzhou, Zhejiang 311121, China; Gusu School, Nanjing Medical University, Nanjing, Jiangsu 215031, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211100, China; Corresponding author: Bin Shen, State Key Laboratory of Reproductive Medicine, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, Jiangsu 211100, China.
- Yuanwu Ma
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing 100730, China; National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China; Corresponding author: Yuanwu Ma, Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China.
- Journal volume & issue
-
Vol. 32
pp. 1 – 12
Abstract
An animal model harboring pathogenic mitochondrial DNA (mtDNA) mutations is important to understand the biological links between mtDNA variation and mitochondrial diseases. DdCBE, a DddA-derived cytosine base editor, has been utilized in zebrafish, mice, and rats for tC sequence-context targeting and human mitochondrial disease modeling. However, human pathogenic mtDNA mutations other than the tC context cannot be manipulated. Here, we screened the combination of different DdCBE pairs at pathogenic mtDNA mutation sites with nC (n for a, g, or c) context and identified that the left-G1333C (L1333C) + right G1333N (R1333N) pair could mediate C⋅G-to-T⋅A conversion effectively at aC sites in rat C6 cells. The editing efficiency at disease-associated mtDNA mutation sites within aC context was further confirmed to be up to 67.89% in vivo. Also, the installed disease-associated mtDNA mutations were germline transmittable. Moreover, the edited rats showed impaired cardiac function and mitochondrial function, resembling human mitochondrial disease symptoms. In summary, for the first time, we expanded the DdCBE targeting scope to an aC motif and installed the pathogenic mutation in rats to model human mitochondrial diseases.