Progress in Fishery Sciences (Apr 2023)

Potential Geographic Distribution of Macrocystis pyrifera in China Based on MaxEnt Model and ArcGIS

  • Baoxian LI,
  • Guoliang LI,
  • Haiqin YAO,
  • Xin SHEN,
  • Xiaoping LU,
  • Zhourui LIANG,
  • Fuli LIU,
  • Pengyan ZHANG,
  • Wenjun WANG

DOI
https://doi.org/10.19663/j.issn2095-9869.20211214002
Journal volume & issue
Vol. 44, no. 2
pp. 118 – 126

Abstract

Read online

Macrocystis pyrifera is a large perennial brown alga used as a raw material in the chemical, energy, and medicine industries. It is also a high-quality material for the construction of seaweed beds with extremely high economic and ecological value. In the 1980s, M. pyrifera was introduced to China, and many experiments on its seedling and cultivation technologies were undertaken. However, research on its ecological adaptability is relatively challenging, and the aquaculture industry has not yet developed due to bottleneck problems. In the present study, the MaxEnt model was used to predict the suitability and potential invasion risk of M. pyrifera in China to lay a foundation for M. pyrifera culture industry development and marine ecological construction. Parameter optimization showed that the predictive performance of the model was the best when the feature combination was product, quadratic, and hinge features and the regularization multiplier was 0.8. Considering the correlation between environmental attributes and their contribution to the model, six environmental factors were selected to construct a prediction model for the suitability of M. pyrifera. Among these, light intensity and temperature produced the greatest impact on the natural distribution of M. pyrifera. For high suitable growth probability, the optimal light intensity was > 2 μmol/(m2·s) and the optimum temperature range was 10.5~17℃. Combined with ArcGIS, the modeling results showed that the suitable habitats for M. pyrifera in China are mainly distributed in the Yellow Sea and Bohai Sea, accounting for approximately 13.17% of the sea area, with a marginal suitability of 5.46%, low suitability of 2.85%, moderate suitability of 1.20%, and high suitability of 3.66%. Furthermore, Liaodong Bay and Bohai Bay are suitable sea areas for the introduction and cultivation of M. pyrifera as well as the construction of M. pyrifera farms. Some areas in Liaodong Bay are highly suitable, indicating a certain risk of invasion. Therefore, ecological safety evaluations should be strengthened if M. pyrifera cultivation is promoted near this area.

Keywords