Synthesis, Antiviral Bioactivity of Novel 4-Thioquinazoline Derivatives Containing Chalcone Moiety
Zhihua Wan,
Deyu Hu,
Pei Li,
Dandan Xie,
Xiuhai Gan
Affiliations
Zhihua Wan
State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, China
Deyu Hu
State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, China
Pei Li
State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, China
Dandan Xie
State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, China
Xiuhai Gan
State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, China
A series of novel 4-thioquinazoline derivatives containing chalcone moiety were designed, synthesized and systematically evaluated for their antiviral activity against TMV. The bioassay results showed that most of these compounds exhibited moderate to good anti-TMV activity. In particular, compounds M2 and M6 possessed appreciable protection activities against TMV in vivo, with 50% effective concentration (EC50) values of 138.1 and 154.8 μg/mL, respectively, which were superior to that of Ribavirin (436.0 μg/mL). The results indicated that chalcone derivatives containing 4-thioquinazoline moiety could effectively control TMV. Meanwhile, the structure-activity relationship (SAR) of the target compounds, studied using the three-dimensional quantitative structure-activity relationship (3D-QSAR) method of comparative molecular field analysis (CoMFA) based on the protection activities against TMV, demonstrated that the CoMFA model exhibited good predictive ability with the cross-validated q2 and non-cross-validated r2 values of 0.674 and 0.993, respectively. Meanwhile, the microscale thermophoresis (MST) experimental showed that the compound M6 may interaction with the tobacco mosaic virus coat protein (TMV CP).