Chemical Engineering Transactions (Jun 2022)

Prediction of Condensed Phase Formation During an Accidental Release of Liquid Hydrogen

  • Federico Ustolin,
  • Federica Ferrari,
  • Nicola Paltrinieri

DOI
https://doi.org/10.3303/CET2291074
Journal volume & issue
Vol. 91

Abstract

Read online

Hydrogen can be adopted as a clean alternative to hydrocarbons fuels in the marine sector. Liquid hydrogen (LH2) is an efficient solution to transport and store hydrogen onboard of large ships. LH2 will be implemented in the maritime field in the near future. Additional safety knowledge is required since this is a new application and emerging risk might arise. Recently, a series of LH2 large-scale release tests was carried out in an outdoor facility as well as in a closed room to simulate spills during a bunkering procedure and inside the ship’s tank connection space, respectively (Aaneby et al., 2021). The extremely low boiling point of hydrogen (-253°C (NIST, 2019)) can cause condensation or even solidification of oxygen and nitrogen contained in air, and thus enrich with oxygen the flammable mixture. This can represent a safety concern since it was demonstrated that a burning mixture of LH2 and solid oxygen may transition to detonation (Litchfield and Perlee, 1965). In this study, the experimental data of an LH2 release test series recently carried out were analysed by means of an advanced machine learning approach. The aim of this study was to provide critical insights on the oxygen condensation and solidification during an LH2 accidental release. In particular, a model was developed to predict the possibility and the location of the oxygen phase change depending on the operative conditions during the bunkering operation (e.g. LH2 flowrate). The model demonstrated accurate and reliable predicting capabilities. The outcomes of the model can be exploited to select effective safety barriers such as a water deluge system to prevent the oxygen change phase.