Open Mathematics (Jul 2021)
On a new generalization of some Hilbert-type inequalities
Abstract
In this work, by introducing several parameters, a new kernel function including both the homogeneous and non-homogeneous cases is constructed, and a Hilbert-type inequality related to the newly constructed kernel function is established. By convention, the equivalent Hardy-type inequality is also considered. Furthermore, by introducing the partial fraction expansions of trigonometric functions, some special and interesting Hilbert-type inequalities with the constant factors represented by the higher derivatives of trigonometric functions, the Euler number and the Bernoulli number are presented at the end of the paper.
Keywords