BMC Immunology (Sep 2005)

Reciprocal role of cyclins and cyclin kinase inhibitor p21<sup>WAF1/CIP1 </sup>on lymphocyte proliferation, allo-immune activation and inflammation

  • Khanna Ashwani K

DOI
https://doi.org/10.1186/1471-2172-6-22
Journal volume & issue
Vol. 6, no. 1
p. 22

Abstract

Read online

Abstract Background Immune activation that results due to the aberrant proliferation of lymphocytes leads to inflammation and graft rejection in organ transplant recipients. We hypothesize that the cell cycle control and inflammation are parallel events, inhibition of cellular proliferation by cyclin kinase inhibitor specifically p21 will limit inflammation and prevent allograft rejection. Methods We performed in vitro and in vivo studies using lymphocytes, and rat heart transplant model to understand the role of cyclins and p21 on mitogen and allo-induced lymphocyte activation and inflammation. Lymphocyte proliferation was studied by 3H-thymidine uptake assay and mRNA expression was studied RT-PCR. Results Activation of allo- and mitogen stimulated lymphocytes resulted in increased expression of cyclins, IL-2 and pro-inflammatory cytokines, which was inhibited by cyclosporine. The over-expression of p21 prolonged graft survival in a completely mismatched rat heart transplant model resulted by inhibiting circulating and intra-graft expression of proinflammatory cytokines. Conclusion Cyclins play a significant role in transplant-induced immune activation and p21 over-expression has potential to inhibit T cell activation and inflammation. The results from this study will permit the design of alternate strategies by controlling cell cycle progression to achieve immunosuppression in transplantation.