Open Life Sciences (Nov 2024)

Comparative transcriptome analysis of maize (Zea mays L.) seedlings in response to copper stress

  • Zhang Mengyan,
  • Zhao Lin,
  • Yun Zhenyu,
  • Wu Xi,
  • Wu Qi

DOI
https://doi.org/10.1515/biol-2022-0953
Journal volume & issue
Vol. 19, no. 1
pp. 366 – 81

Abstract

Read online

Copper (Cu) is considered one of the major heavy metal pollutants in agriculture, leading to reductions in crop yield. To reveal the molecular mechanisms of resistance to copper stress in maize (Zea mays L.) seedlings, transcriptome analysis was conducted on the hybrid variety Zhengdan 958 exposed to 0 (control), 5, and 10 mM Cu stress using RNA-seq. In total, 619, 2,685, and 1,790 differentially expressed genes (DEGs) were identified compared to 5 mM versus 0 mM Cu, 10 mM versus 0 mM Cu, and 10 mM versus 5 mM Cu, respectively. Functional categorization of DEGs according to Gene Ontology revealed that heme binding, defense response, and multiorganism processes were significantly enriched under copper stress. Additionally, Kyoto Encyclopedia of Genes and Genomes enrichment analysis suggested that the copper stress response is mediated by pathways involving phenylpropanoid biosynthesis, flavonoid biosynthesis, and glutathione metabolism, among others. The transcriptome data demonstrated that metabolite biosynthesis and glutathione metabolism play key roles in the response of maize seedlings to copper stress, and these findings provide valuable information for enhancing copper resistance in maize.

Keywords