Nature Communications (Sep 2024)
MXene-based kirigami designs: showcasing reconfigurable frequency selectivity in microwave regime
Abstract
Abstract Today’s wireless environments, soft robotics, and space applications demand delicate design of devices with tunable performances and simple fabrication processes. Here we show strain-based adjustability of RF/microwave performance by applying frequency-selective patterns of conductive Ti3C2T x MXene coatings on low-cost acetate substrates under ambient conditions. The tailored performances were achieved by applying frequency-selective patterns of thin Ti3C2Tx MXene coatings with high electrical conductivity as a replacement to metal on low-cost flexible acetate substrates under ambient conditions. Under quasi-axial stress, the Kirigami design enables displacements of individual resonant cells, changing the overall electromagnetic performance of a surface (i.e., array) within a simulated wireless channel. Two flexible Kirigami-inspired prototypes were implemented and tested within the S, C, and X (2-4 GHz, 4-8 GHz, and 8-12 GHz) microwave frequency bands. The resonant surface, having ~1/4 of the size of a standard A4 paper, was able to steer a beam of scattered waves from each resonator by ~25°. Under a strain of 22%, the resonant frequency of the wired co-planar resonator was shifted by 400 MHz, while the reflection coefficient changed by 158%. Deforming the geometry impacted the spectral response of the components across three arbitrary frequencies in the 4-10 GHz frequency range. With this proof of concept, we anticipate implementing thin films of MXenes on technologically relevant substrates, achieving multi-functionality through cost-effective and straightforward manufacturing.