A High Laser Damage Threshold and a Good Second-Harmonic Generation Response in a New Infrared NLO Material: LiSm3SiS7
Ni Zhen,
Leyan Nian,
Guangmao Li,
Kui Wu,
Shilie Pan
Affiliations
Ni Zhen
Key Laboratory of Functional Materials and Devices for Special Environments of CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi 830011, China
Leyan Nian
Key Laboratory of Functional Materials and Devices for Special Environments of CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi 830011, China
Guangmao Li
Key Laboratory of Functional Materials and Devices for Special Environments of CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi 830011, China
Kui Wu
Key Laboratory of Functional Materials and Devices for Special Environments of CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi 830011, China
Shilie Pan
Key Laboratory of Functional Materials and Devices for Special Environments of CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi 830011, China
A series of new infrared nonlinear optical (IR NLO) materials, LiRe3MS7 (Re = Sm, Gd; M = Si, Ge), have been successfully synthesized in vacuum-sealed silica tubes via a high-temperature solid-state method. All of them crystallize in the non-centrosymmetric space group P63 of the hexagonal system. In their structures, LiS6 octahedra connect with each other by sharing common faces to form infinite isolated one-dimensional ∞[LiS3]n chains along the 63 axis. ReS8 polyhedra share edges and corners to construct a three-dimensional tunnel structure with ∞[LiS3]n chains located inside. Remarkably, LiSm3SiS7 shows promising potential as one new IR NLO candidate, including a wide IR transparent region (0.44–21 μm), a high laser damage threshold (LDT) (3.7 × benchmark AgGaS2), and a good NLO response (1.5 × AgGaS2) at a particle size between 88 μm and 105 μm. Dipole-moment calculation was also used to analyze the origin of NLO responses for title compounds.