The Cryosphere (Dec 2023)
Insights into the vulnerability of Antarctic glaciers from the ISMIP6 ice sheet model ensemble and associated uncertainty
- H. Seroussi,
- V. Verjans,
- S. Nowicki,
- A. J. Payne,
- H. Goelzer,
- W. H. Lipscomb,
- A. Abe-Ouchi,
- C. Agosta,
- T. Albrecht,
- X. Asay-Davis,
- A. Barthel,
- R. Calov,
- R. Cullather,
- C. Dumas,
- B. K. Galton-Fenzi,
- B. K. Galton-Fenzi,
- B. K. Galton-Fenzi,
- R. Gladstone,
- N. R. Golledge,
- J. M. Gregory,
- J. M. Gregory,
- R. Greve,
- R. Greve,
- T. Hattermann,
- M. J. Hoffman,
- A. Humbert,
- A. Humbert,
- P. Huybrechts,
- N. C. Jourdain,
- T. Kleiner,
- E. Larour,
- G. R. Leguy,
- D. P. Lowry,
- C. M. Little,
- M. Morlighem,
- F. Pattyn,
- T. Pelle,
- S. F. Price,
- A. Quiquet,
- A. Quiquet,
- R. Reese,
- R. Reese,
- N.-J. Schlegel,
- N.-J. Schlegel,
- A. Shepherd,
- E. Simon,
- R. S. Smith,
- F. Straneo,
- S. Sun,
- L. D. Trusel,
- J. Van Breedam,
- P. Van Katwyk,
- R. S. W. van de Wal,
- R. S. W. van de Wal,
- R. Winkelmann,
- R. Winkelmann,
- C. Zhao,
- T. Zhang,
- T. Zwinger
Affiliations
- H. Seroussi
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
- V. Verjans
- Center for Climate Physics, Institute for Basic Science, Busan, Republic of Korea
- S. Nowicki
- Geology Department and RENEW Institute, University at Buffalo, Buffalo, NY, USA
- A. J. Payne
- Centre for Polar Observation and Modelling, University of Bristol, Bristol, United Kingdom
- H. Goelzer
- NORCE Norwegian Research Centre, Bjerknes Centre for Climate Research, Bergen, Norway
- W. H. Lipscomb
- Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
- A. Abe-Ouchi
- Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Japan
- C. Agosta
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE-IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
- T. Albrecht
- Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
- X. Asay-Davis
- Fluid Dynamics and Solid Mechanics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
- A. Barthel
- Fluid Dynamics and Solid Mechanics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
- R. Calov
- Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
- R. Cullather
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
- C. Dumas
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE-IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
- B. K. Galton-Fenzi
- Australian Antarctic Division, Kingston, Tasmania, Australia
- B. K. Galton-Fenzi
- Australian Centre for Excellence in Antarctic Science, University of Tasmania, Hobart, Australia
- B. K. Galton-Fenzi
- Australian Antarctic Program Partnership, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
- R. Gladstone
- Arctic Centre, University of Lapland, Rovaniemi, Finland
- N. R. Golledge
- Antarctic Research Centre, Victoria University of Wellington, Wellington, New Zealand
- J. M. Gregory
- National Centre for Atmospheric Science, University of Reading, Reading, United Kingdom
- J. M. Gregory
- Met Office Hadley Centre, Exeter, United Kingdom
- R. Greve
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
- R. Greve
- Arctic Research Center, Hokkaido University, Sapporo, Japan
- T. Hattermann
- Norwegian Polar Institute, iC3: Centre for ice, Cryosphere, Carbon and Climate, Tromsø, Norway
- M. J. Hoffman
- Fluid Dynamics and Solid Mechanics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
- A. Humbert
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
- A. Humbert
- Department of Geoscience, University of Bremen, Bremen, Germany
- P. Huybrechts
- Earth System Science and Departement Geografie, Vrije Universiteit Brussel, Brussels, Belgium
- N. C. Jourdain
- Univ. Grenoble Alpes/CNRS/IRD/G-INP, Institut des Géosciences de l'Environnement, Grenoble, France
- T. Kleiner
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
- E. Larour
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
- G. R. Leguy
- Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
- D. P. Lowry
- GNS Science, Lower Hutt, New Zealand
- C. M. Little
- Atmospheric and Environmental Research, Inc., Lexington, MA, USA
- M. Morlighem
- Department of Earth Sciences, Dartmouth College, Hanover, NH, USA
- F. Pattyn
- Laboratoire de Glaciologie, Université Libre de Bruxelles, Brussels, Belgium
- T. Pelle
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- S. F. Price
- Fluid Dynamics and Solid Mechanics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
- A. Quiquet
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE-IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
- A. Quiquet
- Univ. Grenoble Alpes/CNRS/IRD/G-INP, Institut des Géosciences de l'Environnement, Grenoble, France
- R. Reese
- Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
- R. Reese
- Department of Geography and Environmental Sciences, University of Northumbria, Newcastle upon Tyne, United Kingdom
- N.-J. Schlegel
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
- N.-J. Schlegel
- NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA
- A. Shepherd
- Department of Geography and Environmental Sciences, University of Northumbria, Newcastle upon Tyne, United Kingdom
- E. Simon
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
- R. S. Smith
- National Centre for Atmospheric Science, University of Reading, Reading, United Kingdom
- F. Straneo
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- S. Sun
- Department of Geography and Environmental Sciences, University of Northumbria, Newcastle upon Tyne, United Kingdom
- L. D. Trusel
- Department of Geography, Pennsylvania State University, University Park, PA, USA
- J. Van Breedam
- Earth System Science and Departement Geografie, Vrije Universiteit Brussel, Brussels, Belgium
- P. Van Katwyk
- Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, RI, USA
- R. S. W. van de Wal
- Institute for Marine and Atmospheric research Utrecht, Utrecht University, Utrecht, the Netherlands
- R. S. W. van de Wal
- Department of Physical Geography, Utrecht University, Utrecht, the Netherlands
- R. Winkelmann
- Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
- R. Winkelmann
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24–25, 14476 Potsdam, Germany
- C. Zhao
- Australian Antarctic Program Partnership, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
- T. Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China
- T. Zwinger
- CSC-IT Center for Science, Espoo, Finland
- DOI
- https://doi.org/10.5194/tc-17-5197-2023
- Journal volume & issue
-
Vol. 17
pp. 5197 – 5217
Abstract
The Antarctic Ice Sheet represents the largest source of uncertainty in future sea level rise projections, with a contribution to sea level by 2100 ranging from −5 to 43 cm of sea level equivalent under high carbon emission scenarios estimated by the recent Ice Sheet Model Intercomparison for CMIP6 (ISMIP6). ISMIP6 highlighted the different behaviors of the East and West Antarctic ice sheets, as well as the possible role of increased surface mass balance in offsetting the dynamic ice loss in response to changing oceanic conditions in ice shelf cavities. However, the detailed contribution of individual glaciers, as well as the partitioning of uncertainty associated with this ensemble, have not yet been investigated. Here, we analyze the ISMIP6 results for high carbon emission scenarios, focusing on key glaciers around the Antarctic Ice Sheet, and we quantify their projected dynamic mass loss, defined here as mass loss through increased ice discharge into the ocean in response to changing oceanic conditions. We highlight glaciers contributing the most to sea level rise, as well as their vulnerability to changes in oceanic conditions. We then investigate the different sources of uncertainty and their relative role in projections, for the entire continent and for key individual glaciers. We show that, in addition to Thwaites and Pine Island glaciers in West Antarctica, Totten and Moscow University glaciers in East Antarctica present comparable future dynamic mass loss and high sensitivity to ice shelf basal melt. The overall uncertainty in additional dynamic mass loss in response to changing oceanic conditions, compared to a scenario with constant oceanic conditions, is dominated by the choice of ice sheet model, accounting for 52 % of the total uncertainty of the Antarctic dynamic mass loss in 2100. Its relative role for the most dynamic glaciers varies between 14 % for MacAyeal and Whillans ice streams and 56 % for Pine Island Glacier at the end of the century. The uncertainty associated with the choice of climate model increases over time and reaches 13 % of the uncertainty by 2100 for the Antarctic Ice Sheet but varies between 4 % for Thwaites Glacier and 53 % for Whillans Ice Stream. The uncertainty associated with the ice–climate interaction, which captures different treatments of oceanic forcings such as the choice of melt parameterization, its calibration, and simulated ice shelf geometries, accounts for 22 % of the uncertainty at the ice sheet scale but reaches 36 % and 39 % for Institute Ice Stream and Thwaites Glacier, respectively, by 2100. Overall, this study helps inform future research by highlighting the sectors of the ice sheet most vulnerable to oceanic warming over the 21st century and by quantifying the main sources of uncertainty.