Journal of Magnesium and Alloys (Nov 2023)

Controlling dynamic recrystallization via modified LPSO phase morphology and distribution in Mg-Gd-Y-Zn-Zr alloy

  • Ce Zheng,
  • Shuaifeng Chen,
  • Ming Cheng,
  • Shihong Zhang,
  • Yingju Li,
  • Yuansheng Yang

Journal volume & issue
Vol. 11, no. 11
pp. 4218 – 4234

Abstract

Read online

Featured initial microstructures of Mg-11Gd-4Y-2Zn-0.5Zr alloy (wt%) were obtained by adjusting temperatures of solid solution and cooling methods, including island intergranular 18R and 14H LPSO phases with low-density stacking faults, differentially spaced lamellar intragranular 14H-LPSO phases, and network intergranular 18R-LPSO phases with high-density intragranular stacking faults. Effects of these featured LPSO phases and stacking faults on dynamic recrystallization (DRX) behavior were investigated via hot compression. Promoted DRX behavior via particle stimulated nucleation (PSN) is introduced by coexisting intergranular island 18R and 14H LPSO phases and intragranular wide spacing lamellar 14H-LPSO phases, contributing the highest DRX fraction of 42.6%. Conversely, it is found that DRX behavior with network intergranular 18R-LPSO phases and dense intragranular stacking fault is considerably inhibited with the lowest fraction of 22.8%. That is, the restricted DRX due to dislocations pinning by stacking faults overwhelms the enhanced DRX behavior via PSN of island intergranular 18R and 14H LPSO phases. Specially, compared with dense intragranular lamellar 14H-LPSO phases, high-density stacking faults exert a larger inhibition effect on DRX behavior.

Keywords