PLoS ONE (Jan 2013)

NF-κB repressing factor inhibits chemokine synthesis by peripheral blood mononuclear cells and alveolar macrophages in active pulmonary tuberculosis.

  • Kuo-Hsiung Huang,
  • Chun-Hua Wang,
  • Kang-Yun Lee,
  • Shu-Min Lin,
  • Chien-Huang Lin,
  • Han-Pin Kuo

DOI
https://doi.org/10.1371/journal.pone.0077789
Journal volume & issue
Vol. 8, no. 11
p. e77789

Abstract

Read online

NF-κB repressing factor (NRF) is a transcriptional silencer implicated in the basal silencing of specific NF-κB targeting genes, including iNOS, IFN-β and IL-8/CXCL8. IP-10/CXCL10 and IL-8/CXCL8 are involved in neutrophil and lymphocyte recruitment against M. tuberculosis (MTb) and disease progression of pulmonary tuberculosis (TB). Alveolar macrophages (AM) and peripheral blood mononuclear cells (PBMC) were used to study the regulatory role of NRF in pulmonary TB. AM and PBMC were purified from 19 TB patients and 15 normal subjects. To study the underlying mechanism, PBMC were exposed to heated TB bacilli. The regulation role of NRF in IP-10/CXCL10 and IL-8/CXCL8 was determined by NRF knock-down or over-expression. NRF binding capabilities in promoter sites were measured by chromatin immunoprecipitation (ChIP) assay. The levels of IP-10/CXCL10, IL-8/CXCL8 and NRF were significantly higher in AM and PBMC in patients with active TB. NRF played an inhibitory role in IP-10/CXCL10 and IL-8/CXCL8 inductions. We delineate the role of NRF in pulmonary TB, which inhibits the expressions of IP-10/CXCL10 and IL-8/CXCL8 in AM and PBMC of patients with high bacterial load. NRF may serve as an endogenous repressor to prevent robust increase in IP-10/CXCL10 and IL-8/CXCL8 when TB bacterial load is high.