Applied Sciences (Aug 2023)

Fuzzy Adaptive PSO-ELM Algorithm Applied to Vehicle Sound Quality Prediction

  • Chenlin Wang,
  • Gongzhuo Yang,
  • Junyu Li,
  • Qibai Huang

DOI
https://doi.org/10.3390/app13179561
Journal volume & issue
Vol. 13, no. 17
p. 9561

Abstract

Read online

When dealing with specific tasks, the hidden layer output matrix of an extreme learning machine (ELM) may change, largely due to the random assigned weight matrix of the input layer and the threshold matrix of the hidden layer, which sequentially leads to the corresponding change to output weights. The unstable fluctuations of the output weights increase the structural risk and the empirical risk of ELM. This paper proposed a fuzzy adaptive particle swarm optimization (PSO) algorithm to solve this problem, which could nonlinearly control the inertia factor during the iteration by fuzzy control. Based on the fuzzy adaptive PSO-ELM algorithm, a sound quality prediction model was developed. The prediction results of this model were compared with the other three sound quality prediction models. The results showed that the fuzzy adaptive PSO-ELM model was more precise. In addition, in comparison with two other adaptive inertia factor algorithms, the fuzzy adaptive PSO-ELM model was the fastest model to reach goal accuracy.

Keywords