PLoS Genetics (Jan 2013)

Positional cloning reveals strain-dependent expression of Trim16 to alter susceptibility to bleomycin-induced pulmonary fibrosis in mice.

  • Anguel N Stefanov,
  • Jessica Fox,
  • François Depault,
  • Christina K Haston

DOI
https://doi.org/10.1371/journal.pgen.1003203
Journal volume & issue
Vol. 9, no. 1
p. e1003203

Abstract

Read online

Pulmonary fibrosis is a disease of significant morbidity, with no effective therapeutics and an as yet incompletely defined genetic basis. The chemotherapeutic agent bleomycin induces pulmonary fibrosis in susceptible C57BL/6J mice but not in mice of the C3H/HeJ strain, and this differential strain response has been used in prior studies to map bleomycin-induced pulmonary fibrosis susceptibility loci named Blmpf1 and Blmpf2. In this study we isolated the quantitative trait gene underlying Blmpf2 initially by histologically phenotyping the bleomycin-induced lung disease of sublines of congenic mice to reduce the linkage region to 13 genes. Of these genes, Trim16 was identified to have strain-dependent expression in the lung, which we determined was due to sequence variation in the promoter. Over-expression of Trim16 by plasmid injection increased pulmonary fibrosis, and bronchoalveolar lavage levels of both interleukin 12/23-p40 and neutrophils, in bleomycin treated B6.C3H-Blmpf2 subcongenic mice compared to subcongenic mice treated with bleomycin only, which follows the C57BL/6J versus C3H/HeJ strain difference in these traits. In summary we demonstrate that genetic variation in Trim16 leads to its strain-dependent expression, which alters susceptibility to bleomycin-induced pulmonary fibrosis in mice.