PLoS ONE (Jan 2023)
A correlational study between microstructural, macrostructural and functional age-related changes in the human visual cortex.
Abstract
Age-related changes in the human brain can be investigated from either structural or functional perspectives. Analysis of structural and functional age-related changes throughout the lifespan may help to understand the normal brain development process and monitor the structural and functional pathology of the brain. This study, combining dedicated electroencephalography (EEG) and magnetic resonance imaging (MRI) approaches in adults (20-78 years), highlights the complex relationship between micro/macrostructural properties and the functional responses to visual stimuli. Here, we aimed to relate age-related changes of the latency of visual evoked potentials (VEPs) to micro/macrostructural indexes and find any correlation between micro/macrostructural features, as well. We studied age-related structural changes in the brain, by using the MRI and diffusion-weighted imaging (DWI) as preferred imaging methods for extracting brain macrostructural parameters such as the cortical thickness, surface area, folding and curvature index, gray matter volume, and microstructural parameters such as mean diffusivity (MD), radial diffusivity (RD) and axial diffusivity (AD). All the mentioned features were significantly correlated with age in V1 and V2 regions of the visual cortex. Furthermore, we highlighted, negative correlations between structural features extracted from T1-weighted images and DWI. The latency and amplitude of the three dominants peaks (C1, P1, N1) of the VEP were considered as the brain functional features to be examined for correlation with age and structural features of the corresponding age. We observed significant correlations between mean C1 latency and GM volume averaged in V1 and V2. In hierarchical regression analysis, the structural index did not contribute to significant variance in the C1 latency after regressing out the effect of age. However, the age explained significant variance in the model after regressing out the effect of structural feature.