Cancer Nanotechnology (Jul 2022)

Antiproliferation effects of nanophytosome-loaded phenolic compounds from fruit of Juniperus polycarpos against breast cancer in mice model: synthesis, characterization and therapeutic effects

  • Soheila Moeini,
  • Ehsan Karimi,
  • Ehsan Oskoueian

DOI
https://doi.org/10.1186/s12645-022-00126-x
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 15

Abstract

Read online

Abstract Background This research was performed to synthesize nanophytosome-loaded high phenolic fraction (HPF) from Juniperus polycarpos fruit extract and investigate its antiproliferation effects against breast cancer in mice model. Results The nanophytosome-loaded HPF from Juniperus polycarpos fruit extract was synthesized. The mice trial was conducted to determine the possible toxic effects of the synthesized nanophytosomes. The anticancer, pro-apoptotic, and antioxidative activities of the nanophytosomes were determined. The nanophytosome-loaded HPF had a spherical structure with a size of 176 nm and a polydispersity index coefficient of 0.24. The in vivo study manifested that nanophytosome-loaded HPF significantly improved weight gain and food intake compared to the negative control group (p < 0.05). The nanophytosome-loaded HPF significantly enhanced the expression of bax (3.4-fold) and caspase-3 (2.7-fold) genes, but reduced bcl2 (3.6-fold) gene expression in tumor cells. The average tumor size was significantly decreased in mice treated with nanophytosome-loaded HPF (p < 0.05). The expression of GPX (2.3-fold) and SOD (2.7-fold) antioxidants in the liver of mice supplemented with nanophytosome-loaded HPF was significantly developed compared to the negative control (p < 0.05). The nanophytosome-loaded HPF did not show toxicity on normal cells. Conclusion Our results indicated that nanophytosome-loaded HPF might be a potential anticancer agent for the breast cancer treatment.

Keywords