Frontiers in Microbiology (Oct 2022)
Oral polio revaccination is associated with changes in gut and upper respiratory microbiomes of infants
Abstract
After the eradication of polio infection, the plan is to phase-out the live-attenuated oral polio vaccine (OPV). Considering the protective non-specific effects (NSE) of OPV on unrelated pathogens, the withdrawal may impact child health negatively. Within a cluster-randomized trial, we carried out 16S rRNA deep sequencing analysis of fecal and nasopharyngeal microbial content of Bissau–Guinean infants aged 4–8 months, before and after 2 months of OPV revaccination (revaccinated infants = 47) vs. no OPV revaccination (control infants = 47). The aim was to address changes in the gut and upper respiratory bacterial microbiotas due to revaccination. Alpha-diversity for both microbiotas increased similarly over time in OPV-revaccinated infants and controls, whereas greater changes over time in the bacterial composition of gut (padjusted < 0.001) and upper respiratory microbiotas (padjusted = 0.018) were observed in the former. Taxonomic analysis of gut bacterial microbiota revealed a decrease over time in the median proportion of Bifidobacterium longum for all infants (25–14.3%, p = 0.0006 in OPV-revaccinated infants and 25.3–11.6%, p = 0.01 in controls), compatible with the reported weaning. Also, it showed a restricted increase in the median proportion of Prevotella_9 genus in controls (1.4–7.1%, p = 0.02), whereas in OPV revaccinated infants an increase over time in Prevotellaceae family (7.2–17.4%, p = 0.005) together with a reduction in median proportion of potentially pathogenic/opportunistic genera such as Escherichia/Shigella (5.8–3.4%, p = 0.01) were observed. Taxonomic analysis of upper respiratory bacterial microbiota revealed an increase over time in median proportions of potentially pathogenic/opportunistic genera in controls, such as Streptococcus (2.9–11.8%, p = 0.001 and Hemophilus (11.3–20.5%, p = 0.03), not observed in OPV revaccinated infants. In conclusion, OPV revaccination was associated with a healthier microbiome composition 2 months after revaccination, based on a more abundant and diversified bacterial community of Prevotellaceae and fewer pathogenic/opportunistic organisms. Further information on species-level differentiation and functional analysis of microbiome content are warranted to elucidate the impact of OPV-associated changes in bacterial microbiota on child health.
Keywords