Healthcare Analytics (Jun 2024)

A systematic review of deep learning data augmentation in medical imaging: Recent advances and future research directions

  • Tauhidul Islam,
  • Md. Sadman Hafiz,
  • Jamin Rahman Jim,
  • Md. Mohsin Kabir,
  • M.F. Mridha

Journal volume & issue
Vol. 5
p. 100340

Abstract

Read online

Data augmentation involves artificially expanding a dataset by applying various transformations to the existing data. Recent developments in deep learning have advanced data augmentation, enabling more complex transformations. Especially vital in the medical domain, deep learning-based data augmentation improves model robustness by generating realistic variations in medical images, enhancing diagnostic and predictive task performance. Therefore, to assist researchers and experts in their pursuits, there is a need for an extensive and informative study that covers the latest advancements in the growing domain of deep learning-based data augmentation in medical imaging. There is a gap in the literature regarding recent advancements in deep learning-based data augmentation. This study explores the diverse applications of data augmentation in medical imaging and analyzes recent research in these areas to address this gap. The study also explores popular datasets and evaluation metrics to improve understanding. Subsequently, the study provides a short discussion of conventional data augmentation techniques along with a detailed discussion on applying deep learning algorithms in data augmentation. The study further analyzes the results and experimental details from recent state-of-the-art research to understand the advancements and progress of deep learning-based data augmentation in medical imaging. Finally, the study discusses various challenges and proposes future research directions to address these concerns. This systematic review offers a thorough overview of deep learning-based data augmentation in medical imaging, covering application domains, models, results analysis, challenges, and research directions. It provides a valuable resource for multidisciplinary studies and researchers making decisions based on recent analytics.

Keywords