Biology and Life Sciences Forum (Nov 2023)

Comparative Analysis of RuBisCO Evolution and Intrinsic Differences: Insights from In Silico Assessment in Cyanobacteria, Monocot, and Dicot Plants

  • Ishita Biswas,
  • Debanjan Mitra

DOI
https://doi.org/10.3390/IECAG2023-15820
Journal volume & issue
Vol. 27, no. 1
p. 44

Abstract

Read online

RuBisCO is the main photosynthetic enzyme of carbon assimilatory pathways in nature. Despite being the most abundant protein on earth, RuBisCO is still relatively underutilised in the food chain. Although there are sequence and structure details in the database, there are few instances of studies on evolutionary relationships. A bioinformatics and in silico study was conducted to check sequence and structural differences of RuBisCO among different photosynthetic organisms. RuBisCO from Oryza sativa showed an abundance of charged amino acids, salt-bridges, and intra-protein interactions and was more hydrophilic in nature compared to Nostoc sp., Chlamydomonas reinhardtii, and Nicotiana tabacum. From molecular dynamics simulations, lower root mean square deviation and root mean square fluctuation indicate that RuBisCO from Oryza sativa was more stable, followed by Nicotiana tabacum, and a lower radius of gyrations indicates their tight packing. From this study, it was clear that some specific evolutions in charged amino acids of RuBisCO of monocot, i.e., Oryza sativa, make it more stable and stronger than other plant groups. The study concludes that a more stable nature of RuBisCO is gained from monocot Oryza sativa.

Keywords