Journal of Orthopaedic Surgery and Research (Feb 2024)

Differences and similarities in muscle architecture of fibularis longus and brevis—An observational descriptive cross-sectional and feasibility study

  • Anna E. Sprinchorn,
  • Norman Eizenberg,
  • Priscilla J. Barker

DOI
https://doi.org/10.1186/s13018-024-04594-2
Journal volume & issue
Vol. 19, no. 1
pp. 1 – 8

Abstract

Read online

Abstract Background The fibularis longus (FL) muscle is larger in volume than fibularis brevis (FB) and is therefore claimed to be the stronger evertor of the two. Clinical observation of FL and FB tendon rupture show that injury to the FB has a serious negative effect on hindfoot eversion. This implies that the FB is the stronger and more important evertor. The strength of a muscle is not purely based on its volume, and the observed discrepancy between the FB and FL may be due to differences in muscle architecture. This study compares the muscle architecture of FL with FB. Methods Sixteen legs from eight formaldehyde-fixed human specimens, mean age 83 (range 72–89) years, were dissected. The volume, fibre lengths and fibre pennation angles for both muscles were measured and the physiological cross-sectional area (PCSA) was calculated. Results The FL was always larger than the FB, with an individual difference in volume that varied from 1.4 to 4.6 times larger with a mean difference of 17 ml (95% CI 14–20; p < 0.001). Mean fibre lengths were 9 mm (95% CI 2–16; p = 0.015) longer in FL than in FB. The mean pennation angle was 9.6 degrees in FL and 8.8 degrees in FB, this difference was not significant (p = 0.32). The mean PCSA for FL was 3 cm2 (95% CI 2–4) larger than for FB (p < 0.001). Conclusions With our sample set, the hypothesis that the muscle architecture can explain the clinical discrepancy between the FL and FB, was not supported. The difference in hindfoot eversion might instead depend on the different moment arms of FL and FB and the effect forefoot abduction has on hindfoot eversion.

Keywords