EPJ Web of Conferences (Jan 2021)

CORE DESIGN OF BREED & BURN MOLTEN SALT FAST REACTOR

  • Cuoc Eduardo,
  • Shwageraus Eugene,
  • Kasam Alisha,
  • Scott Ian

DOI
https://doi.org/10.1051/epjconf/202124701004
Journal volume & issue
Vol. 247
p. 01004

Abstract

Read online

Previous designs of once-through solid-fuelled breed-and-burn (B&B) reactor and the conventional molten salt reactor (MSR) concepts suffer from material limitation of neutron irradiation damage and chemical corrosion. A novel breed-and-burn molten salt reactor (BBMSR) concept uses separate molten salt fuel and coolant in a linear assembly core configuration. Similar to Moltex Energy Stable Salt Reactor (SSR) design, the configuration with fuel salt contained in fuel tubes and coolant salt in pool type reactor vessel has been previously studied. The study confirmed that breed-and-burn operation is feasible in principle, however with a low neutronic margin. The objective of this paper was to seek improvements of the neutronic margin with a metallic natural uranium blanket design. A parametric study was performed for the natural uranium blanket design. BBMSR neutronic performance simulation was modelled using Serpent, a Monte Carlo reactor physics code, with a single 3D hexagonal channel containing a single fuel tube in an infinite lattice with reflective radial and vacuum axial boundary conditions. The addition of a metallic natural uranium blanket inside the fuel tube, which increases the natural uranium metal to fuel salt ratio (ϒ) of the BBMSR, was shown to significantly increase the neutronic performance of the BBMSR.