Scientific Reports (Apr 2023)
Prediction prolonged mechanical ventilation in trauma patients of the intensive care unit according to initial medical factors: a machine learning approach
Abstract
Abstract The goal of this study was to develop a predictive machine learning model to predict the risk of prolonged mechanical ventilation (PMV) in patients admitted to the intensive care unit (ICU), with a focus on laboratory and Arterial Blood Gas (ABG) data. This retrospective cohort study included ICU patients admitted to Rajaei Hospital in Shiraz between 2016 and March 20, 2022. All adult patients requiring mechanical ventilation and seeking ICU admission had their data analyzed. Six models were created in this study using five machine learning models (PMV more than 3, 5, 7, 10, 14, and 23 days). Patients’ demographic characteristics, Apache II, laboratory information, ABG, and comorbidity were predictors. This study used Logistic regression (LR), artificial neural networks (ANN), support vector machines (SVM), random forest (RF), and C.5 decision tree (C.5 DT) to predict PMV. The study enrolled 1138 eligible patients, excluding brain-dead patients and those without mechanical ventilation or a tracheostomy. The model PMV > 14 days showed the best performance (Accuracy: 83.63–98.54). The essential ABG variables in our two optimal models (artificial neural network and decision tree) in the PMV > 14 models include FiO2, paCO2, and paO2. This study provides evidence that machine learning methods outperform traditional methods and offer a perspective for achieving a consensus definition of PMV. It also introduces ABG and laboratory information as the two most important variables for predicting PMV. Therefore, there is significant value in deploying such models in clinical practice and making them accessible to clinicians to support their decision-making.