Computation (Jul 2022)
Modeling the Meshing Procedure of the External Gear Fuel Pump Using a CFD Tool
Abstract
In modern aircraft engine technology, there is a tendency to replace the mechanical drive of external gear fuel pumps with an electric one. This significantly reduces the integral energy consumption for pumping fuel (kerosene). On the other hand, in order to reduce the dimensions of the structure, it is reasonable to increase the rotation speed of the pumping unit gears. The above considerations make it advisable to study the problems that may arise in the design of pumping units. Analysis of the existing designs of external gear fuel pumps shows that the flow processes in the meshing zone have a significant impact on the pump performance and lifetime. Incorrect truss plate geometry and the compensation system lead to an increase in the velocities when opening and closing the cavity in the meshing zone, which causes intense cavitation. To understand the causes and factors which influence this phenomenon, it is necessary to study the fluid flow behavior in the meshing zone gaps. High-speed cameras are used to experimentally study the flow behavior. However, this approach gives only a qualitative result but does not allow for determining the absolute values of pressure and load in terms of the angle of rotation. Nevertheless, high-speed surveying can be used as a basis for fluid flow model verification. In this paper, the model of the fluid flow in a high-pressure external gear pump was proposed. The verification of the simulation results for HDZ 46 HLP 68 oil operation was carried out according to the results of experimental data visualization. The influence of rotation speed on the position of cavitation zones was revealed and confirmed by operational data. The analysis of the flow process in meshing for kerosene as a working fluid was carried out.
Keywords