npj Quantum Information (Feb 2021)

Two-dimensional centrosymmetrical antiferromagnets for spin photogalvanic devices

  • Peng Jiang,
  • Xixi Tao,
  • Hua Hao,
  • Yushen Liu,
  • Xiaohong Zheng,
  • Zhi Zeng

DOI
https://doi.org/10.1038/s41534-021-00365-7
Journal volume & issue
Vol. 7, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Spin-dependent photogalvanic effect (PGE) in low-dimensional magnetic systems has recently attracted intensive attention. Based on first-principle transport calculations and symmetry analyses, we propose a robust scheme to generate pure spin current by PGE in centrosymmetric materials with spin polarization antisymmetry. As a demonstration, the idea is successfully applied to a photoelectric device constructed with a zigzag graphene nanoribbon (ZGNR), which has intrinsic antiferromagnetic coupling between the two edges and spin degenerate band structure. It suggests that spin splitting is not a prerequisite for pure spin current generation. More interestingly, by further introducing external transverse electric fields to the two leads to lift the spin degeneracy, the device may behave multifunctionally, capable of producing fully spin-polarized current or pure spin current, depending on whether the fields in the two leads are parallel or antiparallel. Very importantly, our scheme of pure spin current generation with PGE is not limited to ZGNR and can be extended to other two-dimensional (2D) centrosymmetric magnetic materials with spin polarization antisymmetry, suggesting a promising category of 2D platforms for PGE-based pure spin current generation.