Molecules (Nov 2023)

Synthesis of C12-C18 Fatty Acid Isobornyl Esters

  • Rongxiu Qin,
  • Haiyan Chen,
  • Rusi Wen,
  • Zhongyun Liang,
  • Zhonglei Meng

DOI
https://doi.org/10.3390/molecules28227510
Journal volume & issue
Vol. 28, no. 22
p. 7510

Abstract

Read online

Camphene, C12-C18 fatty acids, and titanium sulfate were used as raw materials to study the synthesis of long-chain fatty acid isobornyl esters. Products were analyzed quantitatively by gas chromatography (GC), characterized by nuclear magnetic resonance spectroscopy (hydrogen and carbon), and evaluated using toxicity tests. The optimum reaction conditions were as follows: n(lauric acid):n(camphene) = 2.5:1, m(titanium sulfate):m(camphene) = 0.25:1, reaction temperature of 80 °C, and reaction time of 25 h. Under these conditions, the content of isobornyl laurate in the product was 74.49%, and the content of purified product was 95.02%. The reaction kinetics for isobornyl laurate showed an apparent first-order reaction in the first 9 h with an activation energy of 31.01 kJ/mol. The reaction conditions of myristic acid, palmitic acid, and stearic acid were similar to those of lauric acid, but the reaction time had to be increased as the molecular weight of the fatty acid increased. Toxicity tests for four types of long-chain fatty acid isobornyl esters showed that the samples had low toxicity.

Keywords