Evidence of Neurovascular Un-Coupling in Mild Alzheimer’s Disease through Multimodal EEG-fNIRS and Multivariate Analysis of Resting-State Data
Antonio M. Chiarelli,
David Perpetuini,
Pierpaolo Croce,
Chiara Filippini,
Daniela Cardone,
Ludovica Rotunno,
Nelson Anzoletti,
Michele Zito,
Filippo Zappasodi,
Arcangelo Merla
Affiliations
Antonio M. Chiarelli
Department of Neuroscience, Imaging and Clinical Sciences, Institute for Advanced Biomedical Technologies, Faculty of Medicine, University G. D’Annunzio of Chieti-Pescara, Via Luigi Polacchi 13, 66100 Chieti, Italy
David Perpetuini
Department of Neuroscience, Imaging and Clinical Sciences, Institute for Advanced Biomedical Technologies, Faculty of Medicine, University G. D’Annunzio of Chieti-Pescara, Via Luigi Polacchi 13, 66100 Chieti, Italy
Pierpaolo Croce
Department of Neuroscience, Imaging and Clinical Sciences, Institute for Advanced Biomedical Technologies, Faculty of Medicine, University G. D’Annunzio of Chieti-Pescara, Via Luigi Polacchi 13, 66100 Chieti, Italy
Chiara Filippini
Department of Neuroscience, Imaging and Clinical Sciences, Institute for Advanced Biomedical Technologies, Faculty of Medicine, University G. D’Annunzio of Chieti-Pescara, Via Luigi Polacchi 13, 66100 Chieti, Italy
Daniela Cardone
Department of Neuroscience, Imaging and Clinical Sciences, Institute for Advanced Biomedical Technologies, Faculty of Medicine, University G. D’Annunzio of Chieti-Pescara, Via Luigi Polacchi 13, 66100 Chieti, Italy
Ludovica Rotunno
Department of Medicine and Science of Ageing, Faculty of Medicine, University G. d’Annunzio of Chieti-Pescara, Via Dei Vestini 31, 66100 Chieti, Italy
Nelson Anzoletti
Department of Medicine and Science of Ageing, Faculty of Medicine, University G. d’Annunzio of Chieti-Pescara, Via Dei Vestini 31, 66100 Chieti, Italy
Michele Zito
Department of Medicine and Science of Ageing, Faculty of Medicine, University G. d’Annunzio of Chieti-Pescara, Via Dei Vestini 31, 66100 Chieti, Italy
Filippo Zappasodi
Department of Neuroscience, Imaging and Clinical Sciences, Institute for Advanced Biomedical Technologies, Faculty of Medicine, University G. D’Annunzio of Chieti-Pescara, Via Luigi Polacchi 13, 66100 Chieti, Italy
Arcangelo Merla
Department of Neuroscience, Imaging and Clinical Sciences, Institute for Advanced Biomedical Technologies, Faculty of Medicine, University G. D’Annunzio of Chieti-Pescara, Via Luigi Polacchi 13, 66100 Chieti, Italy
Alzheimer’s disease (AD) is associated with modifications in cerebral blood perfusion and autoregulation. Hence, neurovascular coupling (NC) alteration could become a biomarker of the disease. NC might be assessed in clinical settings through multimodal electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). Multimodal EEG-fNIRS was recorded at rest in an ambulatory setting to assess NC and to evaluate the sensitivity and specificity of the methodology to AD. Global NC was evaluated with a general linear model (GLM) framework by regressing whole-head EEG power envelopes in three frequency bands (theta, alpha and beta) with average fNIRS oxy- and deoxy-hemoglobin concentration changes in the frontal and prefrontal cortices. NC was lower in AD compared to healthy controls (HC) with significant differences in the linkage of theta and alpha bands with oxy- and deoxy-hemoglobin, respectively (p = 0.028 and p = 0.020). Importantly, standalone EEG and fNIRS metrics did not highlight differences between AD and HC. Furthermore, a multivariate data-driven analysis of NC between the three frequency bands and the two hemoglobin species delivered a cross-validated classification performance of AD and HC with an Area Under the Curve, AUC = 0.905 (p = 2.17 × 10−5). The findings demonstrate that EEG-fNIRS may indeed represent a powerful ecological tool for clinical evaluation of NC and early identification of AD.