Frontiers in Immunology (Apr 2019)

Gene Expression Signatures Associated With Immune and Virological Responses to Therapeutic Vaccination With Dendritic Cells in HIV-Infected Individuals

  • Rodolphe Thiébaut,
  • Rodolphe Thiébaut,
  • Rodolphe Thiébaut,
  • Boris P. Hejblum,
  • Boris P. Hejblum,
  • Boris P. Hejblum,
  • Hakim Hocini,
  • Hakim Hocini,
  • Hakim Hocini,
  • Henri Bonnabau,
  • Henri Bonnabau,
  • Henri Bonnabau,
  • Jason Skinner,
  • Monica Montes,
  • Christine Lacabaratz,
  • Christine Lacabaratz,
  • Christine Lacabaratz,
  • Laura Richert,
  • Laura Richert,
  • Laura Richert,
  • Karolina Palucka,
  • Jacques Banchereau,
  • Yves Lévy,
  • Yves Lévy,
  • Yves Lévy

DOI
https://doi.org/10.3389/fimmu.2019.00874
Journal volume & issue
Vol. 10

Abstract

Read online

The goal of HIV therapeutic vaccination is to induce HIV-specific immune response able to control HIV replication. We previously reported that vaccination with ex vivo generated Dendritic Cells (DC) loaded with HIV-lipopeptides in HIV-infected patients (n = 19) on antiretroviral therapy (ART) was well-tolerated and immunogenic. Vaccine-elicited HIV-specific T cell responses were associated with improved control of viral replication following antiretroviral interruption (ATI from w24 to w48). We show an inverse relationship between HIV-specific responses (production of IL-2, IL-13, IL-21, IFN-g, CD4 polyfunctionality, i.e., production of at least two cytokines) and the peak of viral load during ATI. Here we have performed an integrative systems vaccinology analysis including: (i) post vaccination (w16) immune responses assessed by cytometry, cytokine secretion, and Interferon-γ ELISPOT assays; (ii) whole blood and cellular gene expression measured during vaccination; and (iii) viral parameters following ATI, with the objective to disentangle the relationships between these markers and to identify vaccine signatures. During vaccination, 69 gene expression modules out of 260 varied significantly including (by order of significance) modules related to inflammation (Chaussabel Modules M3.2, M4.13, M4.6, M5.7, M7.1, M4.2), plasma cells (M4.11) and T cells (M4.1, 4.15). Cellular immune responses were positively correlated to genes belonging to T cell functional modules (M4.1, M4.15) at w16 and negatively correlated to genes belonging to inflammation modules (M7.1, M5.7, M3.2, M4.13, M4.2). More specifically, we show that prolonged increased abundance of inflammatory gene pathways related to toll-like receptor signaling (especially TLR4) are associated with both lower vaccine immune responses and control of viral replication post ATI. Further comparison of DC vaccine gene signatures with previously reported non-HIV vaccine signatures, such as flu and pneumococcal vaccines, revealed common pathways across vaccines. Overall, these results show that too long duration and too high intensity of vaccine inflammatory responses hamper the magnitude of effector responses.

Keywords