Redox Biology (May 2024)

Role of Selenoprotein W in participating in the progression of non-alcoholic fatty liver disease

  • Zhiruo Miao,
  • Wei Wang,
  • Zhiying Miao,
  • Qiyuan Cao,
  • Shiwen Xu

Journal volume & issue
Vol. 71
p. 103114

Abstract

Read online

Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease worldwide. Numerous evidence has demonstrated that metabolic reprogramming serves as a hallmark associated with an elevated risk of NAFLD progression. Selenoprotein W (SelW) is an extensively expressed hepatic selenoprotein that plays a crucial role in antioxidant function. Here, we first demonstrated that SelW is a significantly distinct factor in the liver tissue of NAFLD patients through the Gene Expression Omnibus (GEO) database. Additionally, loss of SelW alleviated hepatic steatosis induced by a high-fat diet (HFD), and was accompanied by the regulation of metabolic and inflammatory pathways as verified by transcriptomic analysis. Moreover, co-immunoprecipitation (CO-IP), liquid chromatography-tandem mass spectrometry (LC-MS), laser scanning confocal microscopy (LSCM) and molecular docking analysis were subsequently implemented to identify Pyruvate Kinase M2 (PKM2) as a potential interacting protein of SelW. Meanwhile, SelW modulated PKM2 translocation into the nucleus to trigger transactivation of the HIF-1α, in further mediating mitochondrial apoptosis, eventually resulting in mitochondrial damage, ROS excessive production and mtDNA leakage. Additionally, mito-ROS accumulation induced the activation of the NLRP3 inflammasome-mediated pyroptosis, thereby facilitating extracellular leakage of mtDNA. The escaped mtDNA then evokes the cGAS-STING signaling pathway in macrophage, thus inducing a shift in macrophage phenotype. Together, our results suggest SelW promotes hepatocyte apoptosis and pyroptosis by regulating metabolic reprogramming to activate cGAS/STING signaling of macrophages, thereby exacerbating the progression of NAFLD.

Keywords