Methane (Nov 2024)
Damage Effect and Injury Range of Shock Waves in Mine Methane Explosion
Abstract
During the process of mining underground coal, the coal emits a large amount of methane into the mining space, which may lead to methane accumulation and exceed explosion safety limits When the methane encounters a fire source, a methane explosion may occur. The forceful impact caused by a methane explosion in an underground roadway can cause serious damage to the roadway structures and even lead to the collapse of the ventilation system. At the same time, the explosion impact may result in the death of workers and cause physical injury to the surviving workers. Therefore, it is necessary to study the damage effect and injury range of methane explosions. On the basis of the damage criteria and damage characteristics of methane explosions, according to the overpressure distribution of shock waves in the propagation process of a methane explosion, the explosion hazard range is divided into four ranges (from inside to outside): death range, serious injury range, minor injury range, and safety range. Four injury degrees of shock wave overpressure to personal body (slight, medium, serious injury, death), and seven damage degrees of overpressure to structures are also analyzed. The thresholds of their damage (destruction) are determined. On this basis, an experimental system and numerical simulation are constructed to measure damage characteristics, the overpressure value, and the range distance of a methane explosion with different initial explosion intensities. According to the experimental and numerical results, the attenuation formula of a methane explosion shock wave in the propagation process is derived. The research results show that the overpressure and impulse of shock waves are selected as the damage criteria for comprehensive evaluation, and the overpressure criterion is suitable of determining the injury (failure) range over long distances. The four injury ranges are in line with the actual situation and are reasonable. The injury degree also conforms to the medical results, which can be used to guide the injury degree of mine methane explosions. The injury range caused by methane explosions with different initial explosion intensities is reasonable and is basically consistent with the on-site situation. The derived attenuation formula and calculated safety distance are in good agreement with the experimental and numerical results. The research results can provide guidance and help in the escape, rescue, and protection of coal mine underground person.
Keywords