Mathematics (Oct 2024)

Continuity Equation of Transverse Kähler Metrics on Sasakian Manifolds

  • Yushuang Fan,
  • Tao Zheng

DOI
https://doi.org/10.3390/math12193132
Journal volume & issue
Vol. 12, no. 19
p. 3132

Abstract

Read online

We introduce the continuity equation of transverse Kähler metrics on Sasakian manifolds and establish its interval of maximal existence. When the first basic Chern class is null (resp. negative), we prove that the solution of the (resp. normalized) continuity equation converges smoothly to the unique η-Einstein metric in the basic Bott–Chern cohomological class of the initial transverse Kähler metric (resp. first basic Chern class). These results are the transverse version of the continuity equation of the Kähler metrics studied by La Nave and Tian, and also counterparts of the Sasaki–Ricci flow studied by Smoczyk, Wang, and Zhang.

Keywords