Unconventional Resources (Jan 2024)
Development characteristic and main controlling factors of the Ordovician karst caves in the Keping area, Tarim Basin
Abstract
This research endeavors to characterize the primary factors that influence the formation of Ordovician karst caves in the Keping area of China. A 3D digital model of the cave structure and fracture sets was generated using an Unmanned Aerial Vehicle (UAV). The characterization of fracture and cavity development involved the examination of thin sections, fluid inclusion testing, and the analysis of C and O isotopes. Key parameters controlling karst development were identified through the application of multiple linear regressions and statistical analysis. The Ordovician limestone karst cave exhibited four distinct fracture sets. Set 1 consisted of partially filled fractures with a sub-horizontal orientation and a striking direction of SEE, interpreted to have formed during the Middle-Late Caledonian orogeny. Set 2 comprised inclined tensile-shear fractures with a striking direction of NEE, likely formed during the Early Hercynian orogeny. Set 3 included fully filled conjugate shear fractures with variable orientations, which developed during the Indo-Yanshanian orogeny. Set 4 comprised high-angle shear fractures with striking directions of NNE 20–40° and NEE 60–80°, formed during the Himalayan orogeny. Two stages of cave filling deposition were identified. Stage I coincided with the Middle-Late Caledonian Set 1 fractures and can be attributed to the circulation of freshwater fluid. Stage II occurred concurrently with the Early Hercynian Set 2 fractures and can be attributed to deep hydrothermal fluid circulation. The karst caves are interconnected and aligned along a fault zone. The Ordovician limestone possesses high permeability, which facilitates karst development. The lithologies in the Aksu area play a crucial role in cavity formation and dissolution. The development of cavities is influenced by the combined patterns of the fracture system, with larger fault and fracture zones resulting in larger cave sizes. As one moves away from the fault zone, limestone dissolution decreases, resulting in less pronounced karst development.