IEEE Access (Jan 2024)

<italic>H</italic><sub>&#x221E;</sub> Control for Energy Dispatch in Autonomous Nanogrid With Communication Delays

  • Youngwoo Lee,
  • Yonghao Gui,
  • Wonhee Kim

DOI
https://doi.org/10.1109/ACCESS.2024.3390154
Journal volume & issue
Vol. 12
pp. 56492 – 56502

Abstract

Read online

This paper proposes an optimal controller and estimator for energy dispatch to balance the power supply and demand considering communication delays. The proposed algorithm involves modeling an autonomous nanogrid (ANG) consisting of distributed energy resources, energy storage systems, loads, an $H_{\infty }$ controller with a reference power modulation technique, and a state estimator. The ANG was developed to express the dynamic supply-demand energy balance of a nanogird system. Reference power modulation was designed to generate the desired ESS power based on the imbalanced energy. Random communication delays were modeled using a stochastic variable satisfying the Bernoulli random binary distribution. The optimal $H_{\infty }$ controller and estimator were developed using a linear matrix inequality approach to exponentially stabilize the closed-loop system. Simulations were performed using real daily demand forecasts obtained from the Korea Meteorological Administration to demonstrate the effectiveness of the proposed real-time optimization algorithm.

Keywords