Ecotoxicology and Environmental Safety (Mar 2023)

Disinfectants facilitate the transformation of exogenous antibiotic resistance genes via multiple pathways

  • Yuqian Jia,
  • Zeyu Wang,
  • Shuyao Zhu,
  • Zhiqiang Wang,
  • Yuan Liu

Journal volume & issue
Vol. 253
p. 114678

Abstract

Read online

The prevalence and spread of multidrug-resistant (MDR) bacteria pose a global challenge to public health. Natural transformation is one of the essential ways for horizontal transfer of antibiotic resistance genes (ARGs). Although disinfectants are frequently used during COVID-19, little is known about whether these disinfectants are associated with the transformation of plasmid-borne ARGs. In our study, we assessed the effect of some disinfectants on bacterial transformation using resistance plasmids as extracellular DNA and E. coli DH5α as the recipient bacteria. The results showed that these disinfectants at environmentally relevant concentrations, including benzalkonium bromide (BB), benzalkonium chloride (BC) and polyhexamethylene guanidine hydrochloride (PHMG), significantly enhanced the transformation of plasmid-encoded ARGs. Furthermore, we investigated the mechanisms underlying the promotive effect of disinfectants on transformation. We revealed that the addition of disinfectants significantly increased the membrane permeability and promoted membrane-related genes expression. Moreover, disinfectants led to the boosted bacterial respiration, ATP production and flagellum motility, as well as increased expression of bacterial secretion system-related genes. Together, our findings shed insights into the spread of ARGs through bacterial transformation and indicate potential risks associated with the widespread use of disinfectants.

Keywords