Atmospheric Chemistry and Physics (Aug 2018)
No robust evidence of future changes in major stratospheric sudden warmings: a multi-model assessment from CCMI
- B. Ayarzagüena,
- B. Ayarzagüena,
- B. Ayarzagüena,
- L. M. Polvani,
- U. Langematz,
- H. Akiyoshi,
- S. Bekki,
- N. Butchart,
- M. Dameris,
- M. Deushi,
- S. C. Hardiman,
- P. Jöckel,
- A. Klekociuk,
- A. Klekociuk,
- M. Marchand,
- M. Michou,
- O. Morgenstern,
- F. M. O'Connor,
- L. D. Oman,
- D. A. Plummer,
- L. Revell,
- L. Revell,
- E. Rozanov,
- E. Rozanov,
- D. Saint-Martin,
- J. Scinocca,
- A. Stenke,
- K. Stone,
- K. Stone,
- K. Stone,
- Y. Yamashita,
- Y. Yamashita,
- K. Yoshida,
- G. Zeng
Affiliations
- B. Ayarzagüena
- Dpto. Física de la Tierra y Astrofísica, Universidad Complutense de Madrid, Madrid, Spain
- B. Ayarzagüena
- Instituto de Geociencias (IGEO), CSIC-UCM, Madrid, Spain
- B. Ayarzagüena
- previously at: College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
- L. M. Polvani
- Columbia University, New York, USA
- U. Langematz
- Institut für Meteorologie, Freie Universität Berlin, Berlin, Germany
- H. Akiyoshi
- National Institute for Environmental Studies (NIES), Tsukuba, Japan
- S. Bekki
- LATMOS, Institut Pierre Simon Laplace (IPSL), Paris, France
- N. Butchart
- Met Office Hadley Centre (MOHC), Exeter, UK
- M. Dameris
- Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany
- M. Deushi
- Meteorological Research Institute (MRI), Tsukuba, Japan
- S. C. Hardiman
- Met Office Hadley Centre (MOHC), Exeter, UK
- P. Jöckel
- Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany
- A. Klekociuk
- Australian Antarctic Division, Kingston, Tasmania, Australia
- A. Klekociuk
- Antarctic Climate and Ecosystems Cooperative Research Centre, Hobart, Tasmania, Australia
- M. Marchand
- LATMOS, Institut Pierre Simon Laplace (IPSL), Paris, France
- M. Michou
- CNRM UMR 3589, Météo-France/CNRS, Toulouse, France
- O. Morgenstern
- National Institute of Water and Atmospheric Research (NIWA), Wellington, New Zealand
- F. M. O'Connor
- Met Office Hadley Centre (MOHC), Exeter, UK
- L. D. Oman
- National Aeronautics and Space Administration Goddard Space Flight Center (NASA GSFC), Greenbelt, Maryland, USA
- D. A. Plummer
- Environment and Climate Change Canada, Montréal, Canada
- L. Revell
- Institute for Atmospheric and Climate Science, ETH Zürich (ETHZ), Zürich, Switzerland
- L. Revell
- Bodeker Scientific, Christchurch, New Zealand
- E. Rozanov
- Institute for Atmospheric and Climate Science, ETH Zürich (ETHZ), Zürich, Switzerland
- E. Rozanov
- Physikalisch-Meteorologisches Observatorium Davos/World Radiation Centre, Davos, Switzerland
- D. Saint-Martin
- CNRM UMR 3589, Météo-France/CNRS, Toulouse, France
- J. Scinocca
- Environment and Climate Change Canada, Montréal, Canada
- A. Stenke
- Institute for Atmospheric and Climate Science, ETH Zürich (ETHZ), Zürich, Switzerland
- K. Stone
- School of Earth Sciences, University of Melbourne, Melbourne, Australia
- K. Stone
- ARC Centre of Excellence for Climate System Science, Sydney, Australia
- K. Stone
- now at: Massachusetts Institute of Technology (MIT), Boston, Massachusetts, USA
- Y. Yamashita
- National Institute for Environmental Studies (NIES), Tsukuba, Japan
- Y. Yamashita
- now at: Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, Japan
- K. Yoshida
- Meteorological Research Institute (MRI), Tsukuba, Japan
- G. Zeng
- National Institute of Water and Atmospheric Research (NIWA), Wellington, New Zealand
- DOI
- https://doi.org/10.5194/acp-18-11277-2018
- Journal volume & issue
-
Vol. 18
pp. 11277 – 11287
Abstract
Major mid-winter stratospheric sudden warmings (SSWs) are the largest instance of wintertime variability in the Arctic stratosphere. Because SSWs are able to cause significant surface weather anomalies on intra-seasonal timescales, several previous studies have focused on their potential future change, as might be induced by anthropogenic forcings. However, a wide range of results have been reported, from a future increase in the frequency of SSWs to an actual decrease. Several factors might explain these contradictory results, notably the use of different metrics for the identification of SSWs and the impact of large climatological biases in single-model studies. To bring some clarity, we here revisit the question of future SSW changes, using an identical set of metrics applied consistently across 12 different models participating in the Chemistry–Climate Model Initiative. Our analysis reveals that no statistically significant change in the frequency of SSWs will occur over the 21st century, irrespective of the metric used for the identification of the event. Changes in other SSW characteristics – such as their duration, deceleration of the polar night jet, and the tropospheric forcing – are also assessed: again, we find no evidence of future changes over the 21st century.