Applied Sciences (Oct 2024)

Pedestrian Trajectory Prediction in Crowded Environments Using Social Attention Graph Neural Networks

  • Mengya Zong,
  • Yuchen Chang,
  • Yutian Dang,
  • Kaiping Wang

DOI
https://doi.org/10.3390/app14209349
Journal volume & issue
Vol. 14, no. 20
p. 9349

Abstract

Read online

Trajectory prediction is a key component in the development of applications such as mixed urban traffic management and public safety. Traditional models have struggled with the complexity of modeling dynamic crowd interactions, the intricacies of spatiotemporal dependencies, and environmental constraints. Addressing these challenges, this paper introduces the innovative Social Attention Graph Neural Network (SA-GAT) framework. Utilizing Long Short-Term Memory (LSTM) networks, SA-GAT encodes pedestrian trajectory data to extract temporal correlations, while Graph Attention Networks (GAT) are employed to precisely capture the subtle interactions among pedestrians. The SA-GAT framework boosts its predictive accuracy with two key innovations. First, it features a Scene Potential Module that utilizes a Scene Tensor to dynamically capture the interplay between crowds and their environment. Second, it incorporates a Transition Intention Module with a Transition Tensor, which interprets latent transfer probabilities from trajectory data to reveal pedestrians’ implicit intentions at specific locations. Based on AnyLogic modeling of the metro station on Line 10 of Chengdu Shuangliu Airport, China, numerical studies reveal that the SA-GAT model achieves a substantial reduction in ADE and FDE metrics by 34.22% and 38.04% compared to baseline models.

Keywords