Scientific Reports (Nov 2021)

Bimanual digit training improves right-hand dexterity in older adults by reactivating declined ipsilateral motor-cortical inhibition

  • Eiichi Naito,
  • Tomoyo Morita,
  • Satoshi Hirose,
  • Nodoka Kimura,
  • Hideya Okamoto,
  • Chikako Kamimukai,
  • Minoru Asada

DOI
https://doi.org/10.1038/s41598-021-02173-7
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Improving deteriorated sensorimotor functions in older individuals is a social necessity in a super-aging society. Previous studies suggested that the declined interhemispheric sensorimotor inhibition observed in older adults is associated with their deteriorated hand/finger dexterity. Here, we examined whether bimanual digit exercises, which can train the interhemispheric inhibitory system, improve deteriorated hand/finger dexterity in older adults. Forty-eight healthy, right-handed, older adults (65–78 years old) were divided into two groups, i.e., the bimanual (BM) digit training and right-hand (RH) training groups, and intensive daily training was performed for 2 months. Before and after the training, we evaluated individual right hand/finger dexterity using a peg task, and the individual state of interhemispheric sensorimotor inhibition by analyzing ipsilateral sensorimotor deactivation via functional magnetic resonance imaging when participants experienced a kinesthetic illusory movement of the right-hand without performing any motor tasks. Before training, the degree of reduction/loss of ipsilateral motor-cortical deactivation was associated with dexterity deterioration. After training, the dexterity improved only in the BM group, and the dexterity improvement was correlated with reduction in ipsilateral motor-cortical activity. The capability of the brain to inhibit ipsilateral motor-cortical activity during a simple right-hand sensory-motor task is tightly related to right-hand dexterity in older adults.