Separations (Oct 2024)
Roles of Nitrogen- and Sulphur-Containing Groups in Copper Ion Adsorption by a Modified Chitosan Carboxymethyl Starch Polymer
Abstract
Owing to the toxicity and widespread use of copper, the pollution caused by copper ions has become a long-standing environmental and industrial challenge. In this study, a new adsorbent was developed to dispose of and remove copper ions from water. The modified chitosan–carboxymethyl starch (MCTS-CMS) polymer was characterised, and FTIR and SEM-EDS confirmed the successful graft modification of the receptor. The adsorption behaviour was investigated through various parameters, and the results showed that the optimal parameters were pH > 4.0, an adsorption time of 30 min, a reaction temperature of 293 K, and an initial concentration of 100–120 mg/L. The experimental data exhibited a good fit with pseudo-second-order models, and the Langmuir isotherm revealed that the polymer was found to be highly suitable for adsorption, with a maximum adsorption capacity of 321.16 mg/g. Thermodynamic analysis revealed that the adsorption process was exothermic and spontaneous. XRD and XPS confirmed the generation of posnjakite after the adsorption and the predominant roles of nitrogen- and sulphur-containing groups in the adsorption. Further analysis confirmed the existence of chemisorption and physical adsorption, with chemisorption mainly facilitating the Cu(II) absorption of the polymer. MCTS-CMS showed an excellent removal efficiency of 98% in acidic solutions. On the basis of these findings, the MCTS-CMS polymer demonstrates excellent performance and high selectivity in the removal of copper ions from industrial wastewater or polluted water bodies. This work recommends expanding the polymer’s practical applications to contribute to water purification efforts.
Keywords